111 research outputs found

    The Oct4 homologue PouV and Nanog regulate pluripotency in chicken embryonic stem cells

    Get PDF
    International audienceEmbryonic stem cells ( ESC) have been isolated from pregastrulation mammalian embryos. The maintenance of their pluripotency and ability to self- renew has been shown to be governed by the transcription factors Oct4 ( Pou5f1) and Nanog. Oct4 appears to control cell- fate decisions of ESC in vitro and the choice between embryonic and trophectoderm cell fates in vivo. In nonmammalian vertebrates, the existence and functions of these factors are still under debate, although the identification of the zebrafish pou2 ( spg; pou5f1) and Xenopus Pou91 ( XlPou91) genes, which have important roles in maintaining uncommitted putative stem cell populations during early development, has suggested that these factors have common functions in all vertebrates. Using chicken ESC ( cESC), which display similar properties of pluripotency and long- term self- renewal to mammalian ESC, we demonstrated the existence of an avian homologue of Oct4 that we call chicken PouV ( cPouV). We established that cPouV and the chicken Nanog gene are required for the maintenance of pluripotency and self- renewal of cESC. These findings show that the mechanisms by which Oct4 and Nanog regulate pluripotency and self- renewal are not exclusive to mammal

    Identification of transcriptional regulatory variants in pig duodenum, liver, and muscle tissues

    Get PDF
    Background In humans and livestock species, genome-wide association studies (GWAS) have been applied to study the association between variants distributed across the genome and a phenotype of interest. To discover genetic polymorphisms affecting the duodenum, liver, and muscle transcriptomes of 300 pigs from 3 different breeds (Duroc, Landrace, and Large White), we performed expression GWAS between 25,315,878 polymorphisms and the expression of 13,891 genes in duodenum, 12,748 genes in liver, and 11,617 genes in muscle. Results More than 9.68 × 1011 association tests were performed, yielding 14,096,080 significantly associated variants, which were grouped in 26,414 expression quantitative trait locus (eQTL) regions. Over 56% of the variants were within 1 Mb of their associated gene. In addition to the 100-kb region upstream of the transcription start site, we identified the importance of the 100-kb region downstream of the 3′UTR for gene regulation, as most of the cis-regulatory variants were located within these 2 regions. We also observed 39,874 hotspot regulatory polymorphisms associated with the expression of 10 or more genes that could modify the protein structure or the expression of a regulator gene. In addition, 2 motifs (5′-GATCCNGYGTTGCYG-3′ and a poly(A) sequence) were enriched across the 3 tissues within the neighboring sequences of the most significant single-nucleotide polymorphisms in each cis-eQTL region. Conclusions The 14 million significant associations obtained in this study are publicly available and have enabled the identification of expression-associated cis-, trans-, and hotspot regulatory variants within and across tissues, thus shedding light on the molecular mechanisms of regulatory variations that shape end-trait phenotypes.info:eu-repo/semantics/publishedVersio

    Characterization of 3D genomic interactions in fetal pig muscle

    Get PDF
    Genome sequence alone is not sufficient to explain the overall coordination of nuclear activity in a particular tissue. The nuclear organisation and genomic long-range intra- and inter-chromosomal interactions play an important role in the regulation of gene expression and the activation of tissue- specific gene networks. Here we present an overview of the pig genome architecture in muscle at two late developmental stages. The muscle maturation process occurs between the 90th day and the end of gestation (114 days), a key period for survival at birth. To characterise this period we profiled chromatin interactions genome-wide with in situ Hi-C (High Throughput Chromosome Conformation Capture) in muscle samples collected at 90 and 110 days of gestation, specific moments where a drastic change in gene expression has been reported. About 200 million read pairs per library were generated (3 replicates per condition). This allowed: (a) the design of an experimental Hi-C protocol optimized for frozen fetal tissues, (b) the first Hi-C contact heatmaps in fetal porcine muscle cells, and (c) to profile Topologically Associated Domains (TADs) defined as genomic domains with high levels of chromatin interactions. Using the new assembly version Sus scrofa v11, we could map 82% of the Hi-C reads on the reference genome. After filtering, 49% of valid read pairs were used to infer the genomic interactions in both developmental stages. In addition, ChIP-seq experiments were performed to map the binding of the structural protein CTCF, known to regulate genome structure by promoting interactions between genes and distal enhancers. The Hi-C and ChIP-seq data were analysed in combination with the results of a previous transcriptome analysis, focusing on the hun-dreds of genes that were reported as differentially expressed during muscle maturation. We will report the observed general differences between both developmental stages in terms of transcription and structure

    Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease

    Get PDF
    The events that convert adherent epithelial cells into individual migratory cells that can invade the extracellular matrix are known collectively as epithelial-mesenchymal transition (EMT). Throughout evolution, the capacity of cells to switch between these two cellular states has been fundamental in the generation of complex body patterns. Here, we review the EMT events that build the embryo and further discuss two prototypical processes governed by EMT in amniotes: gastrulation and neural crest formation. Cells undergo EMT to migrate and colonize distant territories. Not surprisingly, this is also the mechanism used by cancer cells to disperse throughout the body

    The endogenous retrovirus ENS-1 provides active binding sites for transcription factors in embryonic stem cells that specify extra embryonic tissue

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Long terminal repeats (LTR) from endogenous retroviruses (ERV) are source of binding sites for transcription factors which affect the host regulatory networks in different cell types, including pluripotent cells. The embryonic epiblast is made of pluripotent cells that are subjected to opposite transcriptional regulatory networks to give rise to distinct embryonic and extraembryonic lineages. To assess the transcriptional contribution of ERV to early developmental processes, we have characterized <it>in vitro </it>and <it>in vivo </it>the regulation of ENS-1, a host adopted and developmentally regulated ERV that is expressed in chick embryonic stem cells.</p> <p>Results</p> <p>We show that <it>Ens-1 </it>LTR activity is controlled by two transcriptional pathways that drive pluripotent cells to alternative developmental fates. Indeed, both Nanog that maintains pluripotency and Gata4 that induces differentiation toward extraembryonic endoderm independently activate the LTR. Ets coactivators are required to support Gata factors' activity thus preventing inappropriate activation before epigenetic silencing occurs during differentiation. Consistent with their expression patterns during chick embryonic development, Gata4, Nanog and Ets1 are recruited on the LTR in embryonic stem cells; in the epiblast the complementary expression of Nanog and Gata/Ets correlates with the <it>Ens-1 </it>gene expression pattern; and Ens-1 transcripts are also detected in the hypoblast, an extraembryonic tissue expressing Gata4 and Ets2, but not Nanog. Accordingly, over expression of Gata4 in embryos induces an ectopic expression of <it>Ens-1</it>.</p> <p>Conclusion</p> <p>Our results show that <it>Ens-1 </it>LTR have co-opted conditions required for the emergence of extraembryonic tissues from pluripotent epiblasts cells. By providing pluripotent cells with intact binding sites for Gata, Nanog, or both, <it>Ens-1 </it>LTR may promote distinct transcriptional networks in embryonic stem cells subpopulations and prime the separation between embryonic and extraembryonic fates.</p

    GO-FAANG meeting: a Gathering On Functional Annotation of Animal Genomes

    Get PDF
    The Functional Annotation of Animal Genomes (FAANG) Consortium recently held a Gathering On FAANG (GO-FAANG) Workshop in Washington, DC on October 7–8, 2015. This consortium is a grass-roots organization formed to advance the annotation of newly assembled genomes of domesticated and non-model organisms (www.faang.org). The workshop gathered together from around the world a group of 100+ genome scientists, administrators, representatives of funding agencies and commodity groups to discuss the latest advancements of the consortium, new perspectives, next steps and implementation plans. The workshop was streamed live and recorded, and all talks, along with speaker slide presentations, are available at www.faang.org. In this report, we describe the major activities and outcomes of this meeting. We also provide updates on ongoing efforts to implement discussions and decisions taken at GO-FAANG to guide future FAANG activities. In summary, reference datasets are being established under pilot projects; plans for tissue sets, morphological classification and methods of sample collection for different tissues were organized; and core assays and data and meta-data analysis standards were established.</p

    Profiling the landscape of transcription, chromatin accessibility and chromosome conformation of cattle, pig, chicken and goat genomes [FAANG pilot project]

    Get PDF
    Functional annotation of livestock genomes is a critical and obvious next step to derive maximum benefit for agriculture, animal science, animal welfare and human health. The aim of the Fr-AgENCODE project is to generate multi-species functional genome annotations by applying high-throughput molecular assays on three target tissues/cells relevant to the study of immune and metabolic traits. An extensive collection of stored samples from other tissues is available for further use (FAANG Biosamples ‘FR-AGENCODE’). From each of two males and two females per species (pig, cattle, goat, chicken), strand-oriented RNA-seq and chromatin accessibility ATAC-seq assays were performed on liver tissue and on two T-cell types (CD3+CD4+&CD3+CD8+) sorted from blood (mammals) or spleen (chicken). Chromosome Conformation Capture (in situ Hi-C) was also carried out on liver. Sequencing reads from the 3 assays were processed using standard processing pipelines. While most (50–70%) RNA-seq reads mapped to annotated exons, thousands of novel transcripts and genes were found, including extensions of annotated protein-coding genes and new lncRNAs (see abstract #69857). Consistency of ATAC-seq results was confirmed by the significant proportion of called peaks in promoter regions (36–66%) and by the specific accumulation pattern of peaks around gene starts (TSS) v. gene ends (TTS). Principal Component Analyses for RNA-seq (based on quantified gene expression) and ATAC-seq (based on quantified chromatin accessibility) highlighted clusters characterised by cell type and sex in all species. From Hi-C data, we generated 40kb-resolution interaction maps, profiled a genome-wide Directionality Index and identified from 4,100 (chicken) to 12,100 (pig) topologically-associating do- mains (TADs). Correlations were reported between RNA-seq and ATAC-seq results (see abstract #71581). In summary, we present here an overview of the first multi-species and -tissue annotations of chromatin accessibility and genome architecture related to gene expression for farm animals

    Comparison of Epithelial Differentiation and Immune Regulatory Properties of Mesenchymal Stromal Cells Derived from Human Lung and Bone Marrow

    Get PDF
    Mesenchymal stromal cells (MSCs) reside in many organs including lung, as shown by their isolation from fetal lung tissues, bronchial stromal compartment, bronchial-alveolar lavage and transplanted lung tissues. It is still controversial whether lung MSCs can undergo mesenchymal-to-epithelial-transition (MET) and possess immune regulatory properties. To this aim, we isolated, expanded and characterized MSCs from normal adult human lung (lung-hMSCs) and compared with human bone marrow-derived MSCs (BM-hMSCs). Our results show that lung-MSCs reside at the perivascular level and do not significantly differ from BM-hMSCs in terms of immunophenotype, stemness gene profile, mesodermal differentiation potential and modulation of T, B and NK cells. However, lung-hMSCs express higher basal level of the stemness-related marker nestin and show, following in vitro treatment with retinoic acid, higher epithelial cell polarization, which is anyway partial when compared to a control epithelial bronchial cell line. Although these results question the real capability of acquiring epithelial functions by MSCs and the feasibility of MSC-based therapeutic approaches to regenerate damaged lung tissues, the characterization of this lung-hMSC population may be useful to study the involvement of stromal cell compartment in lung diseases in which MET plays a role, such as in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis

    Tissue Resources for the Functional Annotation of Animal Genomes

    Get PDF
    In order to generate an atlas of the functional elements driving genome expression in domestic animals, the Functional Annotation of Animal Genome (FAANG) strategy was to sample many tissues from a few animals of different species, sexes, ages, and production stages. This article presents the collection of tissue samples for four species produced by two pilot projects, at INRAE (National Research Institute for Agriculture, Food and Environment) and the University of California, Davis. There were three mammals (cattle, goat, and pig) and one bird (chicken). It describes the metadata characterizing these reference sets (1) for animals with origin and selection history, physiological status, and environmental conditions; (2) for samples with collection site and tissue/cell processing; (3) for quality control; and (4) for storage and further distribution. Three sets are identified: set 1 comprises tissues for which collection can be standardized and for which representative aliquots can be easily distributed (liver, spleen, lung, heart, fat depot, skin, muscle, and peripheral blood mononuclear cells); set 2 comprises tissues requiring special protocols because of their cellular heterogeneity (brain, digestive tract, secretory organs, gonads and gametes, reproductive tract, immune tissues, cartilage); set 3 comprises specific cell preparations (immune cells, tracheal epithelial cells). Dedicated sampling protocols were established and uploaded in https://data.faang.org/protocol/samples. Specificities between mammals and chicken are described when relevant. A total of 73 different tissues or tissue sections were collected, and 21 are common to the four species. Having a common set of tissues will facilitate the transfer of knowledge within and between species and will contribute to decrease animal experimentation. Combining data on the same samples will facilitate data integration. Quality control was performed on some tissues with RNA extraction and RNA quality control. More than 5,000 samples have been stored with unique identifiers, and more than 4,000 were uploaded onto the Biosamples database, provided that standard ontologies were available to describe the sample. Many tissues have already been used to implement FAANG assays, with published results. All samples are available without restriction for further assays. The requesting procedure is described. Members of FAANG are encouraged to apply a range of molecular assays to characterize the functional status of collected samples and share their results, in line with the FAIR (Findable, Accessible, Interoperable, and Reusable) data principles
    • …
    corecore